68 research outputs found

    Filament formation and robust strand exchange activities of the rice DMC1A and DMC1B proteins

    Get PDF
    The DMC1 protein, a meiosis-specific DNA recombinase, catalyzes strand exchange between homologous chromosomes. In rice, two Dmc1 genes, Dmc1A and Dmc1B, have been reported. Although the Oryza sativa DMC1A protein has been partially characterized, however the biochemical properties of the DMC1B protein have not been defined. In the present study, we expressed the Oryza sativa DMC1A and DMC1B proteins in bacteria and purified them. The purified DMC1A and DMC1B proteins formed helical filaments along single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), and promoted robust strand exchange between ssDNA and dsDNA over five thousand base pairs in the presence of RPA, as a co-factor. The DMC1A and DMC1B proteins also promoted strand exchange in the absence of RPA with long DNA substrates containing several thousand base pairs. In contrast, the human DMC1 protein strictly required RPA to promote strand exchange with these long DNA substrates. The strand-exchange activity of the Oryza sativa DMC1A protein was much higher than that of the DMC1B protein. Consistently, the DNA-binding activity of the DMC1A protein was higher than that of the DMC1B protein. These biochemical differences between the DMC1A and DMC1B proteins may provide important insight into their functional differences during meiosis in rice

    島根県立大学がA市と共同で行う介護予防教室プログラムの課題

    Get PDF
    本学ではA市との共同事業として2007年度から認知症一次予防を目的とした介護予防教室を11年間実施してきた。2016年度からは大学の担当者が変更となり,2年が経過した。今回,2015年度まで実施していた介護予防教室と,担当者変更後の2年間の教室を概観し,課題を検討した。その結果,どの年の教室参加者も認知機能や精神機能が維持できていたことが確認できたが,2016年度から運動を強化した結果は出ていなかった。効果的な介護予防教室のために,高齢者の自己効力感を高める地域回想法プログラムの見直し,自宅でできる高齢者にやさしい運動の提案,1年間の取り組みを正確に評価できる評価時期の検討が課題と考えられた

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Decrease in Pitting Corrosion Resistance of Extra-High-Purity Type 316 Stainless-Steel by Cu2+ in NaCl

    No full text
    The effect of Cu2+ in bulk solution on pitting corrosion resistance of extra-high-purity type 316 stainless-steel was investigated. Pitting occurred in 0.1 M NaCl-1 mM CuCl2, whereas pitting was not initiated in 0.1 M NaCl. Although deposition of Cu2+ on the surface occurred regardless of a potential region in 0.1 M NaCl-1 mM CuCl2, Cu2+ in bulk solution had no influence on the passive film formation. The decrease in pitting corrosion resistance in 0.1 M NaCl-1 mM CuCl2 resulted from the deposited Cu or Cu compound and continuous supply of Cu2+ on the surface
    corecore